Sichtbare Signale aus Hirn und Herz
Bildgebung
05.12.2017
Über die Menge an Kalzium in und um Zellen, werden wichtige Prozesse im Körper gesteuert. Ein Team des Helmholtz Zentrums München und der Technischen Universität München (TUM) entwickelte jetzt das erste Sensormolekül, dass Kalzium mit der strahlungsfreien Bildgebungsmethode Optoakustik im lebenden Organismus sichtbar machen kann. Zellen müssen hierfür nicht genetisch verändert werden und es entsteht keine Strahlenbelastung. Die Arbeit wurde im ‘Journal of the American Chemical Society’ veröffentlicht.
Kalzium ist ein wichtiger Botenstoff in unserem Körper. In Nervenzellen entscheiden Kalziumionen zum Beispiel darüber, ob Signale an andere Nervenzellen weitergegeben werden oder nicht. Ob ein Muskel angespannt oder entspannt ist, hängt ebenfalls von der Menge an Kalzium in den Muskelzellen ab. Das gilt auch für unseren wichtigsten Muskel – das Herz.
„Weil Kalzium für essentielle Organe wie Herz und Gehirn eine so entscheidende Rolle spielt, würde man gerne ‚live‘ und tief im Gewebe beobachten können, wie sich Kalziumkonzentrationen verändern – auch, um fehlgesteuerte Prozesse bei Krankheiten besser zu verstehen. Unser neues Sensormolekül ist ein kleiner erster Schritt in diese Richtung“, sagt Letztautor Prof. Dr. Gil Gregor Westmeyer. Er ist Forschungsgruppenleiter am Institut für biologische und medizinische Bildgebung sowie am Institut für Entwicklungsgenetik des Helmholtz Zentrums München und darüber hinaus Professor für Molekulare Bildgebung an der TUM. Er und sein Team konnten ihr Molekül bereits erfolgreich in Herzgewebe und Gehirnen von Zebrafischlarven testen.
Kalzium-Messung auch in tieferen Gewebeschichten möglich
Um den Sensor später vielleicht auch im Menschen nutzbar zu machen, ist er mit einem recht neuen, nicht-invasivem bildgebenden Verfahren messbar: der Optoakustik. Diese Bildgebungsmethode beruht auf der für den Menschen ungefährlichen Ultraschalltechnik und kommt ohne radioaktive Strahlung aus. Dabei erwärmen Laserimpulse die absorbierenden Sensormoleküle im Gewebe und dehnen sie kurzzeitig aus, so dass in der Folge Ultraschallsignale erzeugt werden. Diese erfassen die Wissenschaftler dann mit entsprechenden Detektoren und ‚übersetzen‘ sie in dreidimensionale Bilder.
Wenn Licht durch Gewebe strahlt, wird es gestreut. Deshalb werden bei Lichtmikroskopen Bilder schon in weniger als einem Millimeter Tiefe unscharf. Hier liegt der weitere Vorteil der Optoakustik: Ultraschall wird kaum abgelenkt und liefert noch scharfe Bilder in mehreren Zentimetern Tiefe. Gerade für das Gehirn ist das interessant, da bisherige Verfahren nur wenige Millimeter unter die Hirnoberfläche gelangen. Das Gehirn hat aber eine so komplexe dreidimensionale Struktur mit unterschiedlichsten Funktionsbereichen, dass die Oberfläche nur einen kleinen Teil ausmacht. Das Ziel der Forscher ist es deshalb, mit dem neuen Sensor tief im Gewebe Kalziumveränderungen zu messen. Erst Ergebnisse bekamen sie bereits aus den Gehirnen von Zebrafischlarven.
Ungiftig und strahlungsfrei
Die Wissenschaftlerinnen und Wissenschaftler haben das Sensormolekül zudem so entworfen, dass es von lebenden Zellen einfach aufgenommen werden kann. Er ist darüber hinaus nicht schädlich für das Gewebe und arbeitet mit einem Farbumschlag. Wenn der Sensor an Kalzium bindet, ändert sich seine Farbe, was wiederum das Licht-induzierte Optoakustiksignal verändert.
Bei vielen bisherigen bildgebenden Verfahren, mit denen sich Kalziumveränderungen sichtbar machen lassen, müssen Zellen genetisch verändert werden. Sie erhalten dann zum Beispiel die Fähigkeit zu leuchten, wenn sich die Menge an Kalzium in der Zelle ändert. Das Problem hierbei ist, dass ein solcher genetischer Eingriff beim Menschen nicht möglich ist. Mit dem neuen Sensor ließe sich diese Limitierung umgehen, sagen die Wissenschaftler. In Zukunft sollen die Eigenschaften des Moleküls aber noch weiter verfeinert werden, so dass die Sensorsignale in noch tieferen Gewebeschichten gemessen werden können. Hierzu muss das Team um Gil Gregor Westmeyer noch weitere Varianten des Moleküls generieren, die im langwelligeren, für Menschen nicht mehr sichtbaren, Bereich des Lichts absorbieren.
Weitere Informationen
Originalpublikation:
Roberts, S. et al. (2017): Calcium Sensor for Photoacoustic Imaging. Journal of the American Chemical Society, DOI: 10.1021/jacs.7b03064
Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören.
Das Institut für Biologische und Medizinische Bildgebung (IBMI) erforscht In-vivo-Bildgebungstechnologien für die Biowissenschaften. Es entwickelt Systeme, Theorien und Methoden zur Bildgebung und Bildrekonstruktion sowie Tiermodelle zur Überprüfung neuer Technologien auf der biologischen, vorklinischen und klinischen Ebene. Ziel ist es, innovative Werkzeuge für das biomedizinische Labor, zur Diagnose und dem Therapiemonitoring von humanen Erkrankungen bereit zu stellen.
Durch eine steigende Lebenserwartung nehmen sowohl altersbedingte, als auch soziologische und umweltbedingte Einflüsse auf die Gene zu. Diese Veränderungen des genetischen Materials untersucht das Institut für Entwicklungsgenetik (IDG). Im Forschungsbereich Mouse Genetics werden genetische Tiermodelle zur Erforschung verschiedener Erkrankungen entwickelt. Diese Modelle werden im Disease Modelling analysiert um Genfunktionen und Zellprozesse zu identifizieren und den Einfluss von Umwelt und Alterungsprozessen zu bewerten. Ein Schwerpunkt liegt dabei in der Untersuchung neurologischer und psychiatrischer Krankheiten.
Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 40.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. http://www.tum.de
Kontakt
Abteilung Kommunikation
Helmholtz Zentrum München –
Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Ingolstädter Landstraße 1
85764 Neuherberg
Tel.: +49 89 3187-2238
E-Mail
Fachlicher Ansprechpartner
Prof. Dr. Gil Westmeyer
Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Institut für Biologische und Molekulare Bildgebung
Ingolstädter Landstr. 1
85764 Neuherberg
Tel. +49 89 3187 2123
E-Mail