Komplexere biologische Systeme evolvieren freier
Interaktionen zwischen Mutationen führen zu unerwartetem Ergebnis | Studie in eLife
Unsere Gene, auch bekannt als unser Genotyp, bestimmen unsere Eigenschaften, unseren Phänotyp. Die Evolution wirkt auf Veränderungen im Phänotyp ein. Diese entstehen, wenn Mutationen den zugrundeliegenden Genotyp verändern. Aber die Bandbreite an Veränderungen des Phänotyps, welche die Mutationen erzeugen können, ist nicht grenzenlos – Ameisen wächst nicht plötzlich ein Rüssel, und auch so groß wie ein Elefant werden können sie nicht. Ein Team des Institute of Science and Technology Austria (IST Austria) hat herausgefunden, dass sich in einem genregulatorischen System des Bakteriums Escherichia coli das System umso freier entwickeln kann, je mehr Komponenten mutiert werden. Die Studie wurde von einem Team mit Erstautor und Postdoc Mato Lagator unter der Leitung von Călin Guet und Jonathan Bollback durchgeführt und erschien im Journal eLife.
Freiheit für Veränderung
Die Auswirkungen von Mutationen entscheiden, wie sich ein System verändern kann. Wenn wir aber wir ein System betrachten, dass aus mehreren Komponenten besteht, wie etwa eines, dass die Genexpression von E. coli steuert, was passiert dann, wenn nicht nur eine einzelne Komponente mutiert wird, sondern mehrere? Hat das System dann weniger oder mehr Möglichkeiten sich zu verändern? Die Forscher untersuchten diese Frage in einem kleinen genregulatorischen System in E. coli, das aus zwei Komponenten besteht: aus einem Transkriptionsfaktor, also einem Protein, das die Rate der Transkription von genetischer Information von DNA zu RNA kontrolliert; und aus dessen Bindungsstelle an der DNA, an der der Transkriptionsfaktor bindet, um die Transkription zu starten. In dieser Studie untersuchten die Wissenschaftler einerseits was passiert, wenn sie jede einzelne Komponente für sich mutierten, und andererseits wenn sie beide Komponenten gleichzeitig mutierten.
Entgegen ihre Erwartungen fanden sie, dass die Evolution des Systems weniger eingeschränkt ist, wenn mehrere Komponenten mutiert werden. „In starkem Gegensatz zu dem, was ich vor dem Beginn der Experimente annahm, evolviert das System freier, wenn wir mehrere Komponenten mutieren. Das war eine ziemlich Überraschung für mich!“ sagt Erstautor Mato Lagator. Das Team untersuchte daraufhin, wieso sich das System in mehr Richtungen entwickeln kann als seine einzelnen Komponenten.
Wenn 1+1 nicht 2 ist
Sie fanden heraus, dass das System freier evolviert da die Mutationen in den zwei Komponenten miteinander interagieren. Dieses Phänomen nennen sie „intermolekulare Epistase“. Mato Lagator erklärt seine Bedeutung: „Epistase bedeutet, das 1+1 nicht 2 ist, sondern 3 oder 0. Genetisch gesprochen verändert eine Punktmutation den Transkriptionsfaktor so, dass sich der Phänotyp unseres genregulatorischen Systems um X verändert, und die andere Punktmutation ändert die Bindungsstelle so, dass sich der Phänotyp um Y verändert. Wenn jetzt aber beide Mutationen gemeinsam vorkommen, ist der Phänotyp nicht einfach X+Y, sondern er ist anders.“ Das bedeutet, dass die Mutationen interagieren, was dem gesamten System mehr Freiheit gibt sich zu verändern und zu evolvieren.
Bis jetzt war unser Verständnis von Epistase hauptsächlich beschreibender Natur. Aber wie existierende molekulare Mechanismen das Muster von Epistase bestimmen war bislang nicht bekannt. In dieser Studie geben die Forscher ein mechanistisches Verständnis dafür, wie die Mutationen in zwei unterschiedlichen Molekülen interagieren, erklärt Mato Lagator: „Für uns ist am spannendsten, dass wir – für dieses genregulatorische System – zeigen können, dass der Hauptteil der Epistase durch die genetische Struktur des Systems entsteht. Diese Struktur bestimmt, wie die Mutationen mit einander interagieren können.“
Weitere Informationen
Mato Lagator kam 2014 im Rahmen als ISTFellow an das IST Austria, wo er in den Gruppen von Călin Guet und Jonathan Bollback (jetzt an der Universität von Liverpool) forscht. Das Postdoc-Programm ISTfellow hat sich mittlerweile zu ISTplus weiterentwickelt, einem Programm, das auf die Entwicklung von zielgerichteten und übertragbaren Fähigkeiten quer durch die Forschungsdisziplinen des IST Austria abzielt. Die nächste Antragsfrist endet am 15. März 2018.
Die Forschung die zu diesem Ergebnis führte, erhielt eine Förderung durch das People Programme (Marie Curie Actions) des siebten Rahmenprogramms der Europäischen Union (FP7/2007-2013) unter der REA Fördernummer 291734.
Quelle
Mato Lagator et al: “Regulatory network structure determines patterns of intermolecular epistasis”, elife 2017, DOI: 10.7554/eLife.28921 https://elifesciences.org/articles/28921
Foto
Erstautor Mato Lagator analysiert den Phänotyp von mutierten E. Coli Bakterien. Credit: IST Austria