Magnetische Messungen für die medizinische Diagnostik

Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder

Hochempfindliche Sensoren könnten in Zukunft magnetische Signale des Körpers detektieren, um daraus Rückschlüsse auf Herz- oder Hirnströme zu ziehen. Im Vergleich zu den etablierten elektrischen Messverfahren wären sie in der Lage, kontaktlos zu messen, also ohne direkten Hautkontakt. Noch sind solche Messungen mit erheblichem Aufwand verbunden. So müssen die Sensoren stark gekühlt oder gegen andere Magnetfelder abgeschirmt werden. Eine wichtige Grundlage in Richtung biomagnetischer Diagnostik konnten jetzt Forschende der Christian-Albrechts-Universität zu Kiel (CAU) schaffen. Im Sonderforschungsbereich 1261 „Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diagnostics“ erforschen sie die Entwicklung von Magnetfeldsensoren, die langfristig in der Lage sein sollen, mit einer besseren Ortsauflösung ohne größeren Aufwand im medizinischen Alltag eingesetzt zu werden. Das interdisziplinäre Forschungsteam entwickelte ein erstes Sensorsystem, das nicht nur das Erkennen eines magnetischen Signals umfasst, sondern auch seine Verarbeitung. Ihre Ergebnisse stellten sie im Fachmagazin Scientific Reports vor.

Bei manchen Diagnosen, wie zum Beispiel einem Verdacht auf Herzinfarkt, muss es schnell gehen. Die Herzaktivität lässt sich zum Beispiel mit einem Elektrokardiogramm (EKG) untersuchen, bei dem direkt auf die Haut geklebte Elektroden die vom Herzen erzeugten elektrischen Signale messen. Einfacher könnten eines Tages magnetische Messungen sein. „Bei Notfällen oder Langzeituntersuchungen hätten sie den Vorteil, dass sie kontaktlos funktionieren“, erklärt Professor Eckhard Quandt, Sprecher des SFB 1261. Die Mitglieder des interdisziplinären Forschungsverbundes an der CAU erforschen und entwickeln Materialien und die erforderliche Elektronik für einen Einsatz in der Magnetfeldsensorik. „Die elektrische Leitfähigkeit des Körpers unterscheidet sich außerdem an verschiedenen Stellen, magnetische Signale werden hingegen überall gleich gut weitergegeben“, erläutert Quandt einen weiteren Vorzug magnetischer Diagnostik. „So werden genauere Messungen mit einer besseren Ortsauflösung möglich.“ Prinzipiell ließen sich Sensoren damit während der Messung bewegen und Signalveränderungen exakt lokalisieren.

Zwar existieren bereits Sensoren, die biomagnetische Signale des Körpers messen können, sie funktionieren jedoch nur mit supraleitenden Materialien. Das heißt, die Umgebungstemperatur muss dafür aufwendig auf -197 Grad Celsius heruntergekühlt werden, was spezielle Geräte erfordert und mit hohen Kosten verbunden ist.

Sensor und Messsystem in enger interdisziplinäre Zusammenarbeit entstanden

Im SFB 1261 arbeiten daher Forschende aus der Elektrotechnik, Physik, Materialwissenschaft und Medizin eng zusammen, um Magnetfeldsensoren herzustellen, die sich bei Raumtemperatur in der medizinischen Praxis einsetzen lassen. Wichtige Grundlagen dafür konnten sie jetzt schaffen: Zum einen entwickelten sie einen Oberflächenwellensensor, auch SAW-Sensor genannt (engl. Surface Acoustic Wave). Zum anderen beschrieben sie das nötige elektronische Messsystem, in das er integriert ist. Denn für ein sinnvolles Messergebnis kommt es auch darauf an, wie die aufgenommenen Signale verarbeitet und ausgelesen werden.

Den SAW-Sensor stellten die Forschenden im Kompetenzzentrum Nanosystemtechnik der CAU mithilfe von Dünnschichttechnik, Lithographie und Ätzverfahren her. Kernstück ist ein spezielles magnetisches Material. Es ist magnetostriktiv, reagiert also auf Magnetfelder, indem es seine elastischen Eigenschaften ändert und weicher wird. „Wir lassen Schallwellen über die Oberfläche des Sensors laufen. Tritt ein Magnetfeld auf, wird die Welle im magnetischen Material langsamer“, erklärt Anne Kittmann, Doktorandin der Materialwissenschaft im SFB. Über die Änderung der Geschwindigkeit lässt sich ablesen, wie stark das Magnetfeld ist. „Ähnlich ist es bei Eisenbahngleisen: Legt man sein Ohr direkt auf die Schiene, kann man einen kommenden Zug früher hören. Über das Metall ist der Schall schneller als in der Luft.“

Störgeräusche minimieren

Die größte Herausforderung bei der Sensorentwicklung sind Störungen durch andere Magnetfelder. „Biomagnetische Signale sind extrem schwach. Bereits das Magnetfeld der Erde beeinflusst ihre Messung“, sagt Kittmann. Bisher werden die Sensoren daher in Messkammern eingesetzt, die äußere Magnetfelder abschirmen. Doch das ist weder praxistauglich noch schützt es vor Störungen innerhalb der Kammern. „Denn jede elektrische Komponente des Messsystems überlagert das magnetische Signal mit zusätzlichem Rauschen, also eigenen Störgeräuschen“, ergänzt Phillip Durdaut, der im Bereich Elektrotechnik im SFB promoviert. Er konnte gemeinsam mit seinen Kolleginnen und Kollegen das Zusammenspiel der einzelnen elektronischen Bauteile so optimieren, dass ihr Rauschen vernachlässigbar wird.

Für die medizinische Anwendung noch empfindlicher

Bis biomagnetische Sensoren wie der des Kieler SFBs in der medizinischen Praxis verwendet werden können, müssen sie allerdings noch kleiner und empfindlicher werden, zum Beispiel durch die Anpassung des Sensoraufbaus oder den Einsatz weiterer Methoden aus der Signalverarbeitung. Eine Magnetfeldstärke im Piko- bis Femtoteslabereich (ein Billionstel Tesla) messen zu können, ist das langfristige Ziel der Forschenden. SFB-Sprecher Quandt ist zuversichtlich: „In der engen Zusammenarbeit verschiedener Disziplinen und Arbeitsgruppen liegt das große Potential dieses Projekts. Wir können maßgebliche Grundlagen schaffen, um Magnetfeldsensoren langfristig als Standard in der kardiologischen und neurologischen Diagnostik zu etablieren.“

Die Erkenntnisse seien außerdem vielversprechend, um sie aufgrund der breiten Frequenzbereiche, die magnetische Signale aufweisen, auf andere Anwendungen der Magnetfeldsensorik zu übertragen, zum Beispiel als Stromsensoren für die Elektromobilität.

Originalpublikation:
Wide Band Low Noise Love Wave Magnetic Field Sensor System. Anne Kittmann, Phillip Durdaut, Sebastian Zabel, Jens Reermann, Julius Schmalz, Benjamin Spetzler, Dirk Meyners, Nian X. Sun, Jeffrey McCord, Martina Gerken, Gerhard Schmidt, Michael Höft, Reinhard Knöchel, Franz Faupel & Eckhard Quandt. Scientific Reports, volume 8, Article number: 278 (2018) doi:10.1038/s41598-017-18441-4 www.nature.com/articles/s41598-017-18441-4

Weitere Informationen:
www.sfb1261.de

Der SFB 1261 ist Teil des Forschungsschwerpunkts „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel. Im Nanokosmos herrschen andere Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de