Neuer Einblick in die Reifung von miRNAs
Ein internationales Forscherteam unter Leitung des Helmholtz Zentrums München, der Technischen Universität München und der Universität Edinburgh hat mit Hilfe integrierter strukturbiologischer Untersuchungen die Reifung einer krebsauslösenden mikroRNA in der Genregulation aufgeklärt. Die Autoren hoffen, aus den in ‘Nature Communications‘ vorgestellten Ergebnissen langfristig neue Therapien ableiten zu können.
MikroRNAs (miRNAs) bilden eine Klasse von Molekülen, die aus kurzen Abfolgen von RNA-Bausteinen bestehen. Sie sind in der Lage, den Aufbau von bestimmten Proteinen zu verhindern, indem sie die entsprechende Bauplan-RNA abbauen.
Auch krebsauslösende miRNAs, sogenannte oncomiRs, arbeiten nach diesem Prinzip und verhindern vornehmlich die Herstellung von Proteinen, die die Zelle gegen unkontrolliertes Wachstum schützen. „So führt ein verstärktes Auftreten dieser Moleküle in der Zelle langfristig zur Krebsentstehung“, erklärt Prof. Michael Sattler, Direktor des Instituts für Strukturbiologie am Helmholtz Zentrum München und Lehrstuhlinhaber für Biomolekulare NMR Spektroskopie an der Technischen Universität München. „Allerdings sind die molekularen Mechanismen, wie manche miRNAs in der Zelle überhaupt hergestellt werden bis heute nicht gut verstanden.“
Dazu muss man wissen: Bevor eine miRNA in der Zelle wirken kann, durchläuft sie mehrere Reifungsschritte und entwickelt sich von einer sogenannten primären pri-miRNA über ein Vorläuferstadium (englisch: precursor, daher pre-miRNA) hin zur reifen miRNA. Gemeinsam mit Forschenden um Prof. Javier Caceres und Dr. Gracjan Michlewski von der Universität Edinburgh sowie sein Mitarbeiter Hamed Kooshapur (nun National Institutes of Health, USA) untersuchte Sattler in der aktuellen Arbeit die Reifung einer bestimmten pri-miRNA.
„Konkret hatten wir uns auf die Reifung von miRNA-18a konzentriert, die bereits mit Darm-, Brust- und Speiseröhrenkrebs in Verbindung gebracht wurde“, erklärt Michael Sattler. „Um aufzuklären, wie ihre Reifung funktioniert, mussten wir verschiedene Verfahren kombinieren. Dabei kamen sowohl Kernspinresonanz (NMR)-Spektroskopie, Röntgenkristallographie, Kleinwinkel-Röntgenstreuungsanalysen als auch biochemische Experimente zum Einsatz.“
Auf diese Weise konnten die Autoren nachweisen, wie genau ein bestimmtes RNA-Bindeprotein (hnRNP A1) die pri-miRNA-18a erkennt und deren Struktur derart verändert, dass sie sich zur fertigen miRNA-18a weiterentwickelt. Die Forscher gehen davon aus, dass der Mechanismus auch auf andere miRNAs übertragbar ist. „Langfristig hilft uns das Verständnis für die Prozesse dabei, neue Therapieoptionen – beispielsweise gegen Krebs – zu entwickeln“, so Michael Sattler abschließend. „Denn nur wenn wir verstehen, wie die Biologie funktioniert, können wir zielgerichtet darin eingreifen.“
Weitere Informationen
Bildunterschrift:
Die Wissenschaftler konnten nachweisen, wie genau das Protein (blau) die pri-miR-18a (pink) erkennt und deren Struktur derart verändert, dass sie sich zur fertigen miRNA-18a weiterentwickelt. Bild modifiziert nach Kooshapur et al.
Original-Publikation:
Kooshapur,H. et al. (2018): Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1. Nature Communications, DOI: 10.1038/s41467-018-04871-9
Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören.
Das Institut für Strukturbiologie (STB) erforscht die Raumstruktur biologischer Makromoleküle, analysiert deren Struktur und Dynamik und entwickelt NMR-spektroskopie Methoden für diese Untersuchungen. Ziel ist es, molekulare Mechanismen der biologischen Aktivität dieser Moleküle und ihre Beteiligung an Krankheiten aufzuklären. Die Strukturdaten werden als Grundlage für die rationale Entwicklung kleiner Molekülinhibitoren in Verbindung mit Ansätzen der chemischen Biologie angewandt.
Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 40.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurswissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands.
Bildmaterial
Bildbeschreibung und Quelle siehe Fließtext.
Download