Hirnforschung ohne Programmierexpertise möglich

New Research Findings, Bioengineering, ITERM

Forschende von Helmholtz Munich und dem LMU Klinikum stellen DELiVR vor, eine neue KI-basierte Lösung für komplexe Aufgaben in der Gehirnforschung. Indem es fortgeschrittene Programmierkenntnisse überflüssig macht, demokratisiert das Deep-Learning-Tool die moderne Neurowissenschaft. DELiVR ermöglicht eine effiziente Analyse der räumlichen Dynamik von Gehirnzellen im Kontext von Krankheiten, was die Entwicklung präziser Therapien zur Verbesserung der Patientenversorgung vorantreibt.

Demokratisierung der Gehirnanalyse in 3D

Viele Krankheiten sind mit Veränderungen in der Expression bestimmter Proteine im Gehirn verbunden. Um diese Veränderungen zu erforschen, untersuchen Wissenschaftler:innen, wie sie sich während des Krankheitsverlaufs in Modellorganismen entwickeln. Um das ganze Gehirn, beispielsweise einer Maus, zu erfassen, erzeugen sie große Datensätze. Für deren sinnvolle Interpretation sind präzise Quantifizierungsmethoden erforderlich. Die Identifizierung markierter Zellen in großen 3D-Bilddaten ist jedoch eine Herausforderung. Denn obwohl künstliche Intelligenz (KI) die Datenanalyse erleichtert, erfordert sie meist umfangreiche Datenannotationen und fortgeschrittene Programmierkenntnisse. Dies führt dazu, dass nur spezialisierte Labore die Vorteile von KI nutzen können. Das Forschungsteam aus München hatte daher das Ziel, diese Barriere zu überwinden und die Analyse von 3D-Bilddaten einer breiteren Wissenschaftscommunity zugänglich zu machen.

Gehirnzellen in Virtual Reality

Um spezifische Zellen in Gehirnscans genau zu quantifizieren, hat das Forschungsteam zunächst einen KI-Algorithmus darauf trainiert, diese Zellen in mikroskopischen 3D-Bildern zu erkennen. Mithilfe von Virtual Reality (VR) tauchten die Forschenden dann direkt in die Bilder ein und markierten die Zellen in 3D mit Labels – eine weitaus schnellere und präzisere Methode im Vergleich zu herkömmlichen Ansätzen in 2D, für die Zellproben auf feinen Scheiben genutzt werden. Mithilfe dieser im virtuellen Raum generierten Labels trainierte das Forschungsteam einen KI-Algorithmus zur automatischen Erkennung aktiver Neuronen.

Letztendlich kombiniert DELiVR (kurz für „Deep Learning and Virtual Reality mesoscale annotation“) die Prozesse der Zellenerkennung, des Abgleichs mit einem Gehirnatlas und der Visualisierung der Ergebnisse in einer Pipeline. Das Tool arbeitet nahtlos mit Fiji, einer Open-Source-Software für die Bildanalyse. Zudem können User anpassbare Funktionen nutzen, um die Lösung auf bestimmte Zelltypen wie Mikroglia, eine wichtige Immunzelle im Gehirn, zu trainieren. DELiVR kann somit für vielfältige Forschungsprojekte zum Einsatz kommen.

Anwendungsfall: Gewichtsabnahme durch Krebs

Am Beispiel krebsbedingter Hirnaktivitäten verdeutlicht das Forschungsteam die Leistungsfähigkeit von DELiVR. Dafür fokusierten sich die Wissenschaftler:innen auf die tumorbedingte Gewichtsabnahme, die für Betroffene eine große Belastung darstellt. In Mäusen beobachteten sie bestimmte Gehirnaktivitätsmuster, die sie mit einem Gewichtsverlust in Verbindung bringen konnten. Außerdem konnten sie diese deutlich von Hirnaktivitätsmustern unterscheiden, die keine Gewichtsveränderung zur Folge hatten. Das kommentiert Dr. Doris Kaltenecker, eine der Erstautorinnen der DELiVR-Studie so: „Unsere Forschungsergebnisse mit DELiVR zeigen neue potenziell therapeutische Ziele in bestimmten Gehirnregionen. Diese Entdeckung könnte künftig den Weg für neue Strategien zur Bekämpfung des Gewichtsverlusts bei Menschen mit Krebs ebnen.“

Originalpublikation

Kaltenecker, Al-Maskari, Negwer et al., 2024: Virtual reality-empowered deep-learning analysis of brain cells. Nature Methods, DOI: 10.1038/s41592-024-02245-2

Über die Wissenschaftler:innen

Prof. Ali Ertürk, Direktor am Institut for Tissue Engineering and Regenerative Medicine bei Helmholtz Munich, Professor am Institut für Schlaganfall- und Demenzforschung des Klinikums der Ludwig-Maximilians-Universität München
Dr. Doris Kaltenecker, Postdoktorandin am Institut für Diabetes und Krebs bei Helmholtz Munich, beim Translationalen Diabetesprogramm des Universitätsklinikums Heidelberg, am Deutschen Zentrum für Diabetesforschung (DZD) und am Institut für Schlaganfall- und Demenzforschung des Klinikums der Ludwig-Maximilians-Universität München