Robotergestütztes Laserverfahren ermöglicht schonende Kraniotomie im Wachzustand
Um während neurochirurgischen Eingriffen komplexe Hirnfunktionen testen zu können, werden diese an wachen, lokal anästhesierten Patienten durchgeführt. So können die Chirurgen mit ihnen interagieren und prüfen, wie sich ihr Eingriff auf die Hirnfunktion auswirkt. Doch das Öffnen des Schädels im Wachzustand ist für die Betroffenen psychisch äußerst belastend. Ein neues robotergestütztes und optisch präzise überwachtes Laserverfahren des Fraunhofer-Instituts für Lasertechnik ILT in Aachen soll künftig schonende, vibrationsfreie und nahezu lautlose Kraniotomien im Wachzustand ermöglichen. Das Knochengewebe des Schädels wird dabei mit kurzgepulster Laserstrahlung abgetragen.
Schon allein der Gedanke an eine Hirnoperation im Wachzustand lässt viele Menschen schaudern. Betroffene sind mit einem angsteinflößenden Eingriff konfrontiert: Bei der Kraniotomie – dem Öffnen des Schädels – wird das Knochenmaterial mit mechanischen Instrumenten abgetragen, was die Patientinnen und Patienten buchstäblich erschüttert. Immens empfundener Lärm und starke Vibrationen lösen schweren psychischen Stress aus. Die Wachoperationen werden daher meist nur dann durchgeführt, wenn für den Eingriff nur eine kleine Schädelöffnung erforderlich ist – etwa zur tiefen Hirnstimulation bei schwerwiegenden Bewegungsstörungen. Größere Kraniotomien, die beispielsweise für das Entfernen von Hirntumoren notwendig sind, stellen für wache Patienten eine zu große Belastung dar.
Bei Tumor-Entfernungen böte die Möglichkeit zur Interaktion mit den Patientinnen und Patienten während des Eingriffs eine wichtige Kontrollmöglichkeit. Gerade wenn davon für die Sprache und Motorik kritische Hirnregionen betroffen sind, könnten OP-Teams jederzeit testen, ob das Entfernen von Gewebe funktionale Defizite auslöst. Dank der Kontrollmöglichkeit wären unter anderem Tumore radikaler entfernbar, ohne dabei die Hirnfunktionen zu beeinträchtigen. Perspektivisch bietet dies die Chance, die Prognose der betroffenen Patientinnen und Patienten zu verbessern. Ähnlich verhält es sich beim Implantieren von Schrittmachern für die tiefe Hirnstimulation (THS). Um deren Wirkung gegen schwere Schüttellähmungen beispielsweise infolge von Parkinson zu optimieren, müssen die Elektroden zu Hirnstimulation hochpräzise in den betroffenen Hirnarealen positioniert werden. »Die THS wird heute sehr erfolgreich gegen Schüttellähmung eingesetzt. Aufgrund der belastenden Wach-Kraniotomie verzichten aber immer noch viele Betroffene auf den Eingriff, trotz der Erfolge, die diese Methode zeitigt«, sagt Dr. Achim Lenenbach, Leiter der Abteilung Lasermedizintechnik und Biophotonik am Fraunhofer ILT.
Berührungslos operieren
Um die Erfolgschancen ausschöpfen zu können, gilt es die Patientinnen und Patienten bei Wach-Kraniotomien psychisch zu entlasten. Dafür entwickelt Lenenbach mit seinem Team ein neuartiges, robotergestütztes Laserverfahren. Der Wechsel von mechanischen Instrumenten zur Lasertechnik soll nahezu lautlose, vibrationsfrei und damit schonende Kraniotomien möglich machen, damit neurochirurgische Eingriffe sehr viel häufiger im Wachzustand erfolgen können als bisher. Zudem soll das Verfahren durch sensorische Kontrolle des Laserprozesses das Risiko von Hirnhautverletzungen bei der Kraniotomie minimieren und den postoperativen Heilungsprozess verbessern.
Mit diesem Ziel entwickelt das Team im Projekt STELLA einen effizienten, sicheren und weitestgehend automatisierten Laserschneidprozess. Kernkomponente ist ein CO2-Laser mit 120 Nanosekunden (ns) kurzen Laserpulsen. Die kurzen Pulse stellen sicher, dass keine Karbonisationseffekte infolge von Wärmeeintrag an den Schnittkanten auftreten. Denn thermische Schäden am Knochengewebe behindern den Heilungsprozess. Durch die kurze Einwirkdauer entfernen die ns-Pulse das Hartgewebe, ohne das umliegende Gewebe nennenswert zu erhitzen. Das neue Laserverfahren hinterlässt saubere und thermisch unbeeinträchtigte Schnittränder. Doch im Klinikalltag kommt es auch auf die Effizienz an. »Wir erreichen aktuell Abtragraten von 1,6 Kubikmillimetern pro Sekunde (mm³/s)«, berichtet Lenenbach. Für die klinische Anwendung bedürfe es im Sinne eines effizienten Schneidprozesses 2,5 mm³/s. Um das zu erreichen, setze man auf einen auf den Knochenschneidprozess abgestimmten Festkörperlaser.
Umstellung auf einen am Fraunhofer ILT entwickelten Festkörperlaser
Bisher erfolgte die Strahlführung des CO2-Lasers über einen Gelenkspiegelarm. Doch im Sinne erhöhter Effizienz, Reproduzierbarkeit und Flexibilität hat das Fraunhofer-Team das Laser-Kraniotom mit einem fasergeführten Festkörperlaser ausgestattet, der 100 ns kurze Laserpulse im mid-infraroten Spektralbereich um 3 µm emittiert. »Licht mit dieser Wellenlänge wird sehr gut von Knochengewebe absorbiert, kann in einer Faser geführt werden und ist somit leichter mit dem Roboter kombinierbar als CO2-Laserstrahlung«, sagt der Experte. Außerdem könne die Kombination mit dem Roboterarm den Weg zu weiteren medizinischen Anwendungen ebnen. Interessant sei dies unter anderem für Eingriffe an der Wirbelsäule, die wegen der Nähe zum Rückenmark riskant sind. Durch den sensorisch kontrollierten Kurzpulslaserprozess lasse sich das Risiko minimieren.
Da die für das Laser-Kraniotom gefragte Kurzpulslaserquelle mit 3 µm Wellenlänge und 100 ns Pulsdauer kommerziell nicht erhältlich ist, entwickelt sie die Abteilung Laser und Optische Systeme des Fraunhofer ILT gemeinsam mit Industriepartnern. So rücken die avisierten Abtragraten ohne thermische Schädigung des umliegenden Hartgewebes in greifbare Nähe.
Sensorische Überwachung des Laserschneidprozesses
Um sicherzustellen, dass der Laserstrahl tatsächlich nur Knochengewebe abträgt und die darunterliegenden Strukturen wie die Hirnhaut oder das Rückenmark unversehrt bleiben, wird der Laserschneidprozess durch ein OCT (Optical-Coherence-Tomography)-Messsystem überwacht. Ein dem Schneidstrahl überlagerter OCT-Messstrahl ermittelt die lokale Schnitttiefe und Restdicke des Knochens. Unmittelbar vor dem Durchtrennen des Knochens stoppt der Prozess. Die verbleibende feine Knochenlamelle kann danach mit geringem Kraftaufwand ohne Verletzungsrisiko aus dem Verbund gelöst werden. Das präzise geregelte Knochenabtrag sorgt für einen wirksamen Schutz des Gewebes unter dem Schädel oder im Spinalkanal. »Dafür wertet Software die prozesssynchron aufgenommenen Sensorsignale kontinuierlich aus und übermittelt die Ergebnisse an die Echtzeitsteuerung des laserchirurgischen Systems«, erläutert Lenenbach. Zudem zeigt die Inline-OCT-Sensorik den Operateuren an, wie der Abtrag des Knochengewebes voranschreitet. Sie können nach Abschluss des fast lautlosen Schneidprozesses den gelösten Schädeldeckel abheben, um mit dem neurochirurgischen Eingriff zu beginnen. Danach wird der Knochendeckel wieder eingesetzt und wächst dank des schonenden Laserschneidverfahrens schnell wieder mit dem umliegenden Gewebe zusammen.
Virtuelles Systemmodell
Ein virtuelles Systemmodell des Laserkraniotoms ermöglicht es dem Team während des Entwicklungsprozesses, etwaige technische Störeinflüsse im Ablauf der Kraniotomie zu untersuchen sowie den Einfluss einzelner Systemkomponenten ohne Modifikation der Hardware virtuell zu testen. So konnten sie alternative Scanner-Modelle erproben, den Prozess wahlweise mit einem automatisierten Stereotaxie-System oder auch mit einem kollaborativen Roboter durchführen und das virtualisierte System auf diese Weise sehr effizient optimieren. »Die Virtualisierung ist für uns mittlerweile ein sehr wichtiges Werkzeug, um laserbasierte Operationssysteme zu designen, zu testen und sie Schritt für Schritt an die klinische Praxis heranzuführen«, bilanziert Lenenbach. Für effiziente Entwicklungsprozesse sei das digitale Prototyping ein wichtiges Werkzeug.
STELLA-Demonstrator auf der MEDICA 2024
Interessierte können sich vom 11. – 14. November 2024 auf der Leitmesse MEDICA in Düsseldorf über die Technologie informieren. Das Team des Fraunhofer ILT wird auf dem Fraunhofer-Gemeinschaftsstand in Halle 3 Stand E74 den STELLA-Demonstrator präsentieren.
Weitere Informationen:
https://www.ilt.fraunhofer.de/